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Chapter 8. Radiation from Moving Charges 
Notes: 
• Most of the material presented in this chapter is taken from Jackson, Chap. 12 and 

14, and Rybicki and Lightman, Chap. 4. 
• In this chapter, we will be using Gaussian units for the Maxwell equations and other 

related mathematical expressions. 
• Latin indices are used for space coordinates only (e.g., i = 1,2,3 , etc.), while Greek 

indices are for space-time coordinates (e.g., ! = 0,1,2,3 , etc.). 

8.1 Solution of the Wave Equation in Covariant Form 
In this chapter, we will solve for the electromagnetic fields, in a covariant manner, 
through the use of the four-potential. We will do so in a way similar to what was done in 
Chapter 4 in analyzing the solution of the wave equation for the potentials. The 
differences between to the two analyses reside in the facts that in this chapter we will use 
a covariant treatment, and solve the wave equation through the (invariant) Green function 
method (a generalization of what was done in Section 4.3.2). 

Our starting point is equation (7.96) for the wave equation of the four-potential A!  in the 
Lorenz gauge (i.e., !"A

"
= 0 ). More precisely, we wish to solve 
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for a general four-current distribution 
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the Green function 
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and then find the components of the four-potential using 
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Since the problem is “spherically” symmetric (that is, in four dimensions), then the Green 
function can only depend on the difference  

!
z !
!
x "
!
#x , and we write therefore 

 
D
!
x,
!
!x( ) = D

!
x "
!
!x( ) = D

!
z( ) . We now operate on both sides of equation (8.2) with a 

Laplace transform (see the Appendix on the subject) for the time component, and a three-
dimensional Fourier transform for the three-space components. Doing so, we find 
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since 
 
!= !

0
!
0
" #

2 . Please note that, in this case, the Laplace transform links the 
component z

0
 (not the time) to the s-domain . Alternatively, we can write 
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and we are ready to apply the inverse transforms to recover 

 
D
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z( ) . By first computing the 

inverse Laplace transform (with the residue theorem), we find 
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with H z

0( )  the Heaviside step function (see equation (1.14)). We now change to 
spherical coordinate (in three-space, this time) where d 3k = dk d! d" k
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sin !( ) , then 
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with R = z = x ! "x . Expanding the sine functions with complex exponentials we have  
 

 
 

D
!
z( ) =

H z
0( )

8! 2
R

dk e
ik R" z0( )

+ e
" ik R" z0( ) " eik R+ z0( ) " e" ik R+ z0( )( )

0

#

$ ,  (8.8) 

 
and making the change of variable k!"k  for the integrals where the imaginary 
argument of the corresponding exponential is negative, we then find 
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But since R > 0 and x

0
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> 0 , then the Green function is 
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Alternatively, equation (8.10) can be transformed with 
 

 

 

!
!
x "
!
#x( )
2$

%
&
' = ! x

0
" #x

0( )
2

" x " #x
2$

%
&
'

= ! x
0
" #x

0
" R( ) x0 " #x

0
+ R( )$% &'

=
1

2R
! x

0
" #x

0
" R( ) + ! x

0
" #x

0
+ R( )$% &',

 (8.11) 

 
where we used equation (1.13) 
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Furthermore, since only one of the two delta functions (i.e., the first) in equation (8.11), 
for reasons discussed earlier, contributes to the Green function, then 
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8.2 The Liénard-Wiechert Potentials and Fields for a Point Charge 
We now consider the potentials and fields due to a single moving particle of charge q . If 
the position of the particle in a given inertial frame K  is r t( ) , then its charge and current 
densities in that frame are 
 

 
! x,t( ) = q" x # r t( )$% &'

J x,t( ) = qu t( )" x # r t( )$% &',
 (8.15) 

 
where u t( ) = dr t( ) dt  is the velocity of the charge in K . Using the definition for the 
four-current (see equation (7.91)), equations (8.15) can be combined into a single 
covariant relation with 
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where U!  is the charge’s four-velocity, and r!  its four-position (c.f., equation (6.13) of 
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Substituting equations (8.16) and (8.14) into equation (8.3), we have for the four-
potential 
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where the integral gives a contribution from the “retarded” proper time ! = !

0
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from the argument of the Heaviside function x
0
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0
!( ) ) defined by 
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We use once more equation (1.13) (or (8.12)) with 
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where it is understood that these relations are evaluated at !

0
. Since only the first of the 

two delta functions in equation (8.21) contributes to the integral of equation (8.18), the 
four-potential becomes 
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These potentials are known as the Liénard-Wiechert potentials. In the inertial frame K , 
we can expand the denominator using equations (8.17) to get 
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and ! = u "( ) c . We are now in a position to give expressions for the scalar and vector 
potentials in K  
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where “ret” means that the potentials are to be evaluated at the retarded proper time !

0
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given by r
0
! 0( ) = x0 " R . The electromagnetic fields could be evaluated from equations 

(8.24) (or equations (8.22)), but we will use instead equation (8.18) as a starting point, 
and apply equation (7.96). Thus, we need to evaluate the following 
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We will not, however, consider in our analysis cases where R = 0  (i.e., the observer is 
not located at the “retarded” position of the source), equation (8.25) then simplifies to  
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We will need to use the following to solve this integral 
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and using equation (8.20) we find 
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Inserting equation (8.29) into equation (8.26) we get 
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after integrating by parts, and  
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but the first part of the integrand does not contribute to integral when R ! 0 , so 
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Upon using equation (8.21) to solve this integral, and equation (7.81) for the 
electromagnetic tensor, we find that 
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With this result, we are now in a position to express the electric and magnetic induction 
field. Remembering that R ! x
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Using equations (8.37) and (8.23), it can be shown from equation (8.33) that 
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We see that the electromagnetic fields are composed of a velocity and an acceleration 
component, and only the latter radiates in the far field. Note also that in the radiation field 
E,  B,  and n  form a right-handed triad of mutually perpendicular vectors, and that 
E = B . 

8.3 The Total Power Radiated by an Accelerated Charge 
In order to simplify our derivation for the total power radiated by an accelerated charge, 
we need to make a short digression to discuss ways to evaluate the time component of 
any four-vector as measured by an observer with a given four-velocity.  

8.3.1 Evaluating the time components of four-vectors 

Since a four-velocity  
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when seen by a stationary observer, it takes a particularly simple form in the rest frame of 
the particle itself. That is, for an observer moving with the particle we have 
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where 0  is the null vector in three-space. Because of this, the time component of an 
arbitrary four-vector  
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A  as measured in the rest frame of the particle is 
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It is important to emphasize the fact that if !A

0  is evaluated in the rest frame of the 
particle, the quantity  
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A  can be evaluated in any reference frame. For example, set 
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which is expected, since proper time is the time seen by an observer in the rest frame. 
Another example can be worked out if we set  
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and 
 

 !" = #" 1$
u

c
cos %( )

&
'(

)
*+
.  (8.45) 

 
Equation (8.45) is the Doppler shift formula. 

8.3.2 Emission from Relativistic Particles 
Let’s consider a particle moving at relativistic velocities, and we define its instantaneous 
rest frame !K  as the referential where the particle has zero velocity at a given time. We 
also define another frame K  relative to which the particle is moving at velocity !u  (i.e., 
u  is the instantaneous velocity of !K , or the particle, as seen by K ). We can use 
equation (8.42) to relate radiated power as seen in both frames. First, we consider the 
four-momentum  
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P , and more precisely its time component !P
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since P!

= mU
! . Similarly, we have 
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Equations (8.46) and (8.47) can obviously rewritten as 
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If we consider the amount of energy dW  (or d !W ) radiated by the particle in an amount 
of time dt  (or d !t ), we can evaluate the power radiated P  (or !P ) as 
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and from equations (8.48) we find that the total power emitted is a Lorentz invariant. 
That is, 
 
 P = !P . (8.50) 
  
We can use this invariance of the total power to our advantage. If we put ourselves in the 
rest frame !K  of the particle, then we can consider the non-relativistic form for the 
equations of the electromagnetic fields. From equations (8.38), in the radiation field, we 
have 
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which implies that the radiation is polarized in the plane containing the acceleration of 
the particle and n . The instantaneous energy flux S  is given by 
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The power radiated per unit solid angle is  
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If we define !  as the angle between the acceleration  !u  and n , then  
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and the total instantaneous power radiated by an accelerated charge, in the non-
relativistic limit, is given by the so-called Larmor formula 
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It is possible to generalize this result to the fully relativistic case if we remember that the 
four-acceleration aµ
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Hence, we can write the generalized relativistic version of the Larmor formula in a 
manifestly covariant form as 
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Alternatively, we can write from the first of equations (8.37) that 
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and finally, 
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We see that the power radiated is composed of parts proportional and perpendicular to the 
acceleration of the particle.  

8.4 Angular Distribution of Radiation Emitted by an Accelerated 
Charge 

In the non-relativistic approximation, i.e., equation (8.54), the angular distribution of 
radiation is sin2 !( ) , where !  is the angle between the acceleration  !u  and the unit vector 
n .  In the fully relativistic case, we must use the radiation components of equations 
(8.38) for the electromagnetic fields to calculate the energy flux emitted in the direction 
of n . That is, 
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 (8.62) 

 
since n !E = 0  for the radiation field (see equations (8.38)). Finally, the flux is 
 

 

 

S !n[ ]
ret
=

q
2

4"c
1

R
2

n # n $ %( ) # !%{ }
1$ % !n( )

3

2&

'

(
(

)

*

+
+
ret

.  (8.63) 

 
Although the energy flux expressed in equation (8.63) is evaluated at the retarded time 
!t = t " R !t( ) c , it reaches the observer located at x  at time t . The energy per unit area 

measured by the observer in a period of time going from T
1
+ R T

1( ) c  and T
2
+ R T

2( ) c  
is given by 
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where !t  is the retarded time as measured in the inertial frame of the observer, and not 
the time in the frame where the charge is at rest (as it appears in Lorentz transformations, 
for example). Since dt = 1! " #n( )d $t  (see equation (4.63) of the lecture notes, and 
equation (6.19) of the second list of problem), we can write the power radiated per unit 
angle as 
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d"
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2
S #n( ) 1$ % #n( ). (8.65) 

 
If we further assume that the amplitude of the displacements of the charge are small 
compared to R , then both n and R  are (approximately) unaffected by its motion and 
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8.4.1 Acceleration Parallel to the Velocity 
When a charge exhibits a linear motion and its acceleration is parallel to its velocity, then 
equation (8.66) becomes 
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where !  is, once again, the angle between n and !  (or 
 
!! ). Equation (8.67) simplifies to 

equation (8.54) in the non-relativistic limit, but as ! " 1 the angular distribution is 
tipped forward and increases in amplitude, as show in Figure 8.1. Setting the 
!-derivative  of equation (8.67) to zero, we find that the angle of maximum intensity !

max
 

is given by 
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In the extremely relativistic limit this relation becomes 
 

 lim
!"1

#
max

=
1

2$
,  (8.69) 
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Figure 8.1 – Radiation pattern for a charge accelerated along its direction of motion. The 
two patterns are not to scale, the relativistic one (

 
! ! 2 ) has been reduced by a factor of 

about 100 for the same acceleration. 

since 
 
! = 1"1 # 2( )

1
2
! 1"1 2# 2( ).  Because the angular distribution of the radiation is 

highly peaked, we can write 
 
cos !( ) ! 1"! 2 2 , and from equation the previous 

approximation for ! , we find that 
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and thus 
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8.4.2 Acceleration Perpendicular to the Velocity 

If the orientation of 
 
n, !,  and !!  as a function of the angles !  and "  is as defined in 

Figure 8.2, then equation (8.66) becomes 
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and after calculating the required scalar products 
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Figure 8.2 – The orientation of 
 
n,!,  and !!  as a function of the angles !  and "  for the 

case of a charge accelerated in a direction perpendicular to its velocity. 
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Again, if we concentrate on the extreme relativistic limit where ! " 1, then inserting 
equation (8.70) into equation (8.72) we get 
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The angular distribution of the radiation is mostly contained within a range of angles 
approximately given by 

 
! ! 1 " , as shown in Figure 8.3. 

8.4.3 Distribution in Frequency and Angle of Energy Radiated by Accelerating 
Charges 

Looking back at equation (8.62), we could equation write the following for the 
expression of the power radiated per unit solid angle as function of observer’s time (not 
the retarded as was done in the last section) 
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with  
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Integrating equation (8.75) over time yields the energy radiated per solid angle 
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Figure 8.3 – The angular distribution of radiation emitted by a particle with 
perpendicular acceleration and velocity (the acceleration is directed “upward”). 
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If we now introduce the Fourier transform pair 
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(please note that if A t( )  is real, then A !( ) = A"

#!( ) ), then equation (8.77) can be 
transformed to 
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The general result that  
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is called Parseval’s theorem. We now define a new quantity for the radiated energy per 
solid unit angle per unit frequency as 
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which for a real signal becomes 
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Inserting equation (8.81) (or (8.82)) in equation (8.79), we find 
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To apply equation (8.83) to the problem of an accelerated charge, we first calculate the 
Fourier transform of the radiation electric field in the far field (from the first of equations 
(8.38)) 
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where the quantity in between the brackets is to be evaluated at the retarded time 
!t = t " R !t( ) c . We now change the variable of integration from t  to !t  just as we did for 

equation (8.64), and we get 
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and we, again, assume that the amplitude of the displacements of the charge are small 
compared to R  so that both n and R  are (approximately) unaffected by its motion. 
Furthermore, if we define the distance between the observation point and the origin from 
which the charge’s position r !t( )  is evaluated as x , then we can write 
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We should note that the exponential term in front of the integral has no physical 
significance and can be neglected, since the quantity we seek to evaluate is proportional 
to A !( )

2 . Inserting equation (8.87) into equation (8.82), we get 
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Given the equation for the motion of the charge r !t( ) , this result (i.e., equation (8.88)) 
can be used to calculate the radiated energy per unit solid angle per unit frequency. 
Alternatively, we can modify equation (8.87) by integrating by parts, since the ratio 
involving 

 
n, !,  and !!  is a perfect time differential. More precisely, 

 

 

 

d

d !t

n " n " #( )

1$ # %n
&

'
(

)

*
+ =

n " n " !#( )&
'

)
* 1$ # %n( ) + !# %n( ) n " n " #( )&' )*

1$ # %n( )
2

=
n " n " !#( ) $ !# %n( )n $ !#&

'
)
* # %n( ) + # %n( )n $ #&' )*

!# %n( )
1$ # %n( )

2

=
n " n " !#( ) + !# # %n( ) $ # !# %n( )

1$ # %n( )
2

=
n " n " !#( ) $ n " # " !#( )

1$ # %n( )
2

=
n " n $ #( ) " !#{ }

1$ # %n( )
2

,

 (8.89) 

 
so that we can write 
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where it was assumed that !  vanishes at !t = ±" . Inserting equation (8.90) into equation 
(8.82) we finally find that 
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